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1 Introduction

The radial time independent Schrödinger equation can be expressed with the boundary
value problem:

q ′′(r) = [l(l + 1)/r2 + V (r) − k2]q(r). (1)

There are many scientific areas of applied sciences in which the mathematical mod-
els of their problems are expressed with the above mentioned boundary value problem.
Astronomy, astrophysics, quantum mechanics, quantum chemistry, celestial mechan-
ics, electronics physical chemistry and chemical physics are some of them (see for
example [1–4]).

For the above model (1), we give the following definitions: (1) The function W (r) =
l(l+1)/r2+V (r) is called the effective potential. This satisfies W (x) → 0 as x → ∞,
(2) The quantity k2 is a real number denoting the energy, (3) The quantity l is a given
integer representing the angular momentum, (4) V is a given function which denotes
the potential.

The boundary conditions are:

q(0) = 0, (2)

and a second boundary condition, for large values of r , determined by physical con-
siderations.

The subject of this paper is to maximize the efficiency of a numerical algorithm for
the numerical solution of the Schrödinger equation and related problems with periodic
or oscillating solutions. More specifically, the effect of the vanishing of the phase-lag
and its first, second and third derivatives on the efficiency of the produced numerical
methods will be studied in this paper.

We note here that the obtained methods via the above procedure, are very effective
on any problem with periodic or oscillating solutions or on any problem with solution
which contains the functions cos and sin or on any problem with solution that is a
combination of them.

More specifically, the aim of this paper is the calculation of the coefficients of the
introduced hybrid two-step method in order:

1. to have the the highest possible algebraic order
2. to have the phase-lag vanished
3. to have the first derivative of the phase-lag vanished as well
4. to have the second derivative of the phase-lag vanished as well
5. and finally, to have the third derivative of the phase-lag vanished as well

The calculation of the phase-lag and therefore the procedure of vanishing of the
phase lag and its first, second and third derivatives is based on the direct formula for
the determination of the phase-lag for 2m-method (see [29] and [26]).

The study of the effectiveness of the new proposed procedure will be based on
the investigation of the local truncation error and of the stability analysis of the new
proposed method. We will also apply the obtained methods to the resonance problem
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of the radial time independent Schrödinger equation. This is one of the most difficult
problems arising from the radial Schrödinger equation.

The format of the paper is given below:

– A bibliography relevant on the subject of the paper is presented in Sect. 2.
– In Sect. 3, the phase-lag analysis of symmetric 2k-methods is developed.
– The new hybrid method is constructed in Sect. 4.
– In Sect. 5, the error analysis is presented.
– The stability properties of the new obtained method are presented in Sect. 6.
– The numerical results are presented in Sect. 7.
– Finally, remarks and conclusions are presented in Sect. 8.

2 Bibliography relevant on the subject of the paper

The last decades much research has been done on the construction of efficient, fast
and reliable algorithms for the approximate solution of the radial Schrödinger equation
and related problems (see for example [5–102]). In the following, we mention some
bibliography:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [5–11].

– In [12–17] exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [23–49].

– Symplectic integrators are investigated in [50–74].
– Exponentially and trigonometrically multistep methods have been produced in

[75–95].
– Nonlinear methods have been studied in [96] and [97]
– Review papers have been presented in [98–102]
– Special issues and Symposia in International Conferences have been developed on

this subject (see [103–109])

3 Basic theory on the phase-lag analysis of symmetric multistep methods

Let consider a multistep method with k steps which can be used over the equally spaced
intervals {xi }k

i=0 ∈ [a, b] and h = |xi+1−xi |, i = 0(1)k−1, for the numerical solution
of the initial value problem

p′′ = f (x, p) (3)

If the method is symmetric, then ai = ak−i and bi = bk−i , i = 0(1) k
2 .

When a symmetric 2k-step method, that is for i = −k(1)k, is applied to the scalar
test equation

p′′ = −ω2 p (4)
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a difference equation of the form

Ak(H) pn+k + · · · + A1(H) pn+1 + A0(H) pn + A1(H) pn−1

+· · · + Ak(H) pn−k = 0 (5)

is obtained, where H = ω h, h is the step length and A0(H), A1(H), . . . , Ak(H) are
polynomials of H = ω h.

The characteristic equation associated with (5) is given by:

Ak(H) λk + · · · + A1(H) λ + A0(H) + A1(H) λ−1 + · · · + Ak(H) λ−k = 0 (6)

Theorem 1 [26] and [29] The symmetric 2k-step method with characteristic equation
given by (6) has phase-lag order q and phase-lag constant c given by:

−c Hq+2 + O
(

Hq+4
)

= 2 Ak (H) cos (k H) + · · · + 2 A j (H) cos ( j H) + · · · + A0 (H)

2 k2 Ak (H) + · · · + 2 j2 A j (H) + · · · + 2 A1 (H)
(7)

The formula mentioned in the above theorem is a direct method for the computation
of the phase-lag of any symmetric 2k- step method.

4 Development of the new method

Let us consider the following family of hybrid (Runge–Kutta type) symmetric two-
step methods for the numerical solution of problems of the form p′′ = f (x, p) (see
[100]):

p̂n+1 = 2 pn − pn−1 + h2 fn

p̃n+1 = 2 pn − pn−1 + h2

12

(
f̂n+1 + 10 fn + fn−1

)

p̄n− 1
2

= 1

52
(3 p̃n+1 + 20 pn + 29 pn−1)

+ h2

4992

(
41 f̂n+1 − 682 fn − 271 fn−1

)

p̄n+ 1
2

= 1

104
(5 p̃n+1 + 146 pn − 47 pn−1)

+ h2

4992

(
−59 f̂n+1 + 1438 fn + 253 fn−1

)

pn+1 + a0 pn + pn−1 = h2
[
b0

(
f̃n+1 + fn−1

)
+ b1

(
f̄n+ 1

2
+ f̄n− 1

2

)
+ b2 fn

]

(8)

In the above general form:
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– the coefficient b0, b1, b2 and a0 are free parameters,
– h is the step size of the integration,
– n is the number of steps,
– pn is the approximation of the solution on the point xn

– xn = x0 + n h and
– x0 is the initial value point.

Application of the method (8) to the scalar test equation (4) leads to the difference
equation (5) with k = 1 and A j (H), j = 0, 1 given by:

A0 (H) = a0 + 2 b0 H2 − b0 H4 + 1

12
H6 b0 + 2 b1 H2 − 1

4
b1 H4

+ 1

192
H6 b1 + H2 b2, A1 (H) = 1 (9)

We demand the above mentioned method to have its phase-lag vanished. Using the
formulae (7) (for k = 1) and (9), the following equation is obtained:

Phase-Lag = cos (H) + 1

2
a0 + b0 H2 − 1

1
2 b0 H4 + 1

1
24 H6 b0

+b1 H2 − 1

1
8 b1 H4 + 1

384
H6 b1 + 1

2
H2b2 = 0 (10)

Requiring now the method to have the first derivative of the phase-lag vanished as
well, the following equation is obtained:

First Derivative of the Phase-Lag = − sin (H) + 2 b0 H − 2 b0 H3 + 1

4
H5 b0

+2 b1 H − 1

2
b1 H3+ 1

64
H5 b1 + H b2 = 0

(11)

Demanding for the new obtained method the second derivative of the phase-lag to
be vanished as well, the following equation is obtained:

Second Derivative of the Phase-Lag = − cos (H) + 2 b0 − 6 b0 H2 + 5

4
b0 H4

+2 b1 − 3

2
b1 H2 + 5

64
b1 H4 + b2 = 0

(12)

Finally, we require for the new produced method the third derivative of the phase-lag
to be vanished as well. Therefore, the following equation is obtained:

Third Derivative of the Phase-Lag = sin (H) − 12 b0 H

+5 b0 H3 − 3 b1 H + 5

16
b1 H3 = 0 (13)
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We demand now the coefficients of the new proposed method to satisfy the
Eqs. (10)–(13). Therefore, the following coefficients of the new developed method
are obtained:

a0 = 1/24 H3 sin (H) + 3/8 cos (H) H2 − 11

8
H sin (H) − 2 cos (H)

b0 = 1

24

T0

H5
, b1 = 1

3

T1

H5
, b2 = 1

8

T2

H5
(14)

where:

T0 = sin (H) H4 + 5 cos (H) H3 − 21 sin (H) H2 − 48 cos (H) H + 48 sin (H)

T1 = −2 sin (H) H4 − 10 cos (H) H3 + 18 sin (H) H2 + 24 cos (H) H − 24 sin (H)

T2 = − sin (H) H6 − 7 cos (H) H5 + 25 sin (H) H4 + 50 cos (H) H3

−82 sin (H) H2 − 96 cos (H) H + 96 sin (H)

For some values of |ω| the formulae given by (14) are subject to heavy cancellations.
In this case the following Taylor series expansions should be used:

a0 = −2 + 1

20160
H8 − 1

453600
H10 + 1

23950080
H12

− 1

2179457280
H14 + 1

298896998400
H16

− 1

57164050944000
H18 + · · ·

b0 = 1

60
− 1

315
H2 + 17

90720
H4 − 1

199584
H6

+ 47

622702080
H8 − 17

23351328000
H10 + 31

6351561216000
H12

− 61

2534272925184000
H14 + 31

340606281144729600
H16

− 1

3672161468591616000
H18 + · · ·

b1 = 4

15
+ 4

315
H2 − 11

5670
H4 + 2

31185
H6

− 41

38918880
H8 + 31

2918916000
H10 − 29

396972576000
H12

+ 29

79196028912000
H14 − 149

106439462857728000
H16

+ 31

7344322937183232000
H18 + · · · (15)
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Fig. 1 Behavior of the coefficients of the new proposed method given by (14) for several values of H = ω h

b2 = 13

30
− 2

105
H2 + 53

15120
H4 − 79

249480
H6

+ 1061

103783680
H8 − 331

1945944000
H10 + 503

288707328000
H12

− 151

12422906496000
H14 + 1591

25803506147328000
H16

− 269

1129895836489728000
H18 + · · ·

The behavior of the coefficients is given in the following Fig. 1.
The local truncation error of the new proposed method (mentioned as NM) is given

by:

LTENM = − h8

20160

(
p(8)

n + 4 ω2 p(6)
n + 6 ω4 p(4)

n + 4 ω6 p(2)
n + ω8 pn

)
+ O

(
h10

)

(16)
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5 Error analysis

We will study the following methods:

5.1. Classical method (i.e. the method (8) with constant coefficients)

LTECL = − h8

20160
p(8)

n + O
(

h10
)

(17)

5.2. Method with vanished phase-lag and its first derivative (developed in [43])

LTESI = − h8

20160

(
p(8)

n + 2 ω2 p(6)
n + ω4 p(4)

n

)
+ O

(
h10

)
(18)

5.3. Method with vanished phase-lag and its first and second derivatives (developed
in [48])

LTEAS =− h8

20160

(
p(8)

n + 3 ω2 p(6)
n +3 ω4 p(4)

n +ω6 p(2)
n

)
+O

(
h10

)
(19)

5.4. Method with vanished phase-lag and its first, second and third derivatives (devel-
oped in Sect. 4)

LTENM = − h8

20160

(
p(8)

n + 4 ω2 p(6)
n + 6 ω4 p(4)

n + 4 ω6 p(2)
n + ω8 pn

)

+O
(

h10
)

(20)

The following procedure is applied:

1. The radial time independent Schrödinger equation is of the form

p′′ (x) = f (x) p (x) (21)

2. Based on the paper of Ixaru and Rizea [75], the function f (x) can be written in
the form:

f (x) = g(x) + G (22)

where g(x) = V (x) − Vc = g, where Vc is the constant approximation of the
potential and G = ω2 = Vc − E .

3. We express the derivatives p(i)
n , i = 2, 3, 4, . . . , which are terms of the local

truncation error formulae, in terms of the Eq. (22). The expressions are presented
as polynomials of G

4. Finally, we substitute the expressions of the derivatives, produced in the previous
step, into the local truncation error formulae
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Using the procedure mentioned above and the formulae:

p(2)
n = (V (x) − Vc + G) q(x)

p(4)
n =

(
d2

dx2 V (x)

)
q(x) + 2

(
d

dx
V (x)

) (
d

dx
q(x)

)

+ (V (x) − Vc + G)

(
d2

dx2 q(x)

)

p(6)
n =

(
d4

dx4 V (x)

)
q(x) + 4

(
d3

dx3 V (x)

) (
d

dx
q(x)

)

+3

(
d2

dx2 V (x)

) (
d2

dx2 q(x)

)
+ 4

(
d

dx
V (x)

)2

q(x) (23)

+6 (V (x) − Vc + G)

(
d

dx
V (x)

) (
d

dx
q(x)

)

+4 (V (x) − Vc + G) q(x)

(
d2

dx2 V (x)

)

+ (V (x) − Vc + G)2
(

d2

dx2 q(x)

)

. . .

we obtain the expressions of the local truncation errors. For the classical method (i.e.
the method (8) with constant coefficients) the expression can be found in [48]. For the
method with vanished phase-lag and its First Derivative the expression can be found
in [43]. For the method with vanished phase-lag and its first and second derivatives the
expression can be found in [48]. Finally, for the new developed method the expression
can be found in the Appendix.

We consider two cases in terms of the value of E :

– The energy is close to the potential, i.e., G = Vc − E ≈ 0. Consequently, the
free terms of the polynomials in G are considered only. Thus, for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G are the same for the cases of the classical method and of the
methods with vanished the phase-lag and its derivatives.

– G >> 0 or G << 0. Then |G| is a large number.

Therefore, we have the following asymptotic expansions of the local truncation
errors.

5.5. Classical method (for details see in [48])

LTECL = h8
(

− 1

20160
p (x) G4 + · · ·

)
+ O

(
h10

)
(24)
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5.6. New method with vanished phase-lag and its first derivative (developed in [43])

LTESI = h8
[(

1

2240

(
d2

dx2 g (x)

)
p (x) + 1

10080

(
d

dx
g (x)

)
d

dx
p (x)

+ 1

20160
g (x)2 p (x)

)
G2 + · · ·

]
+ O

(
h10

)
(25)

5.7. New method with vanished phase-lag and its first and second derivatives (devel-
oped in [48])

LTEAS = h8
[(

1

5040

(
d2

dx2 g (x)

)
p (x)

)
G2 + · · ·

]
+ O

(
h10

)
(26)

5.8. Method with vanished phase-lag and its first, second and third derivatives (devel-
oped in Sect. 4)

LTENM = h8
[(

1

1680

(
d4

dx4 g (x)

)
p (x) + 1

2520

(
d3

dx3 g (x)

)
d

dx
p (x)

+ 1

1260
g (x) p (x)

d2

dx2 g (x)+ 1

1680

(
d

dx
g (x)

)2

p (x)

)
G+· · ·

]

+O
(

h10
)

(27)

From the above equations, we have the following theorem:

Theorem 2 For the classical hybrid two-step method the error increases as the fourth
power of G. For the method with vanished phase-lag and its First Derivative (devel-
oped in [43]), the error increases as the second power of G. For the Method with
vanished phase-lag and its first and second derivatives (developed in [48]), the error
increases as the second power of G. For the method with vanished phase-lag and its
first, second and third derivatives (developed in Sect. 4), the error increases as the first
power of G. So, for the numerical solution of the time independent radial Schröding-
er equation the new method with vanished phase-lag and its first, second and third
derivatives is much more efficient, especially for large values of |G| = |Vc − E |.

6 Stability analysis

Let us apply the new obtained method to the scalar test equation:

q ′′ = −z2 q, (28)

We note that z �= ω. Thus, we obtain the following difference equation:

A1 (v, H) (qn+1 + qn−1) + A0 (v, H) qn = 0 (29)
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where

A0 (v, H) = 1

24

T3

H5
, A1 (v, H) = 1 (30)

where T3 = H8 sin (H) + 9 cos (H) H7 − 33 sin (H) H6 − 48 cos (H) H5 +
3 sin (H) H4v4+15 cos (H) H3v4−15 sin (H) H2v4−v6 sin (H) H2−3 v6 cos (H)

H+45 sin (H) H4v2−3 v2 sin (H) H6−21 v2 cos (H) H5+3 v6 sin (H) and v = z h.
The corresponding characteristic equation is given by:

A1 (v, H)
(
λ2 + 1

)
+ A0 (v, H) λ = 0 (31)

Definition 1 (see [18]) A symmetric 2k-step method with the characteristic equation
given by (6) is said to have an interval of periodicity

(
0, v2

0

)
if, for all v ∈ (

0, v2
0

)
, the

roots zi , i = 1, 2 satisfy

λ1,2 = e±i ζ(v), |λi | ≤ 1, i = 3, 4, . . . (32)

where ζ(v) is a real function of z h and v = z h.

Definition 2 (see [18]) A method is called P-stable if its interval of periodicity is
equal to (0,∞).

Definition 3 A method is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞)− S1 only when the frequency of the phase fitting is the same as the
frequency of the scalar test equation, i.e. v = H .

In Fig. 2 we present the H − v plane for the method developed in this paper. A
shadowed area denotes the H − v region where the method is stable, while a white
area denotes the region where the method is unstable.

Remark 1 For the solution of the Schrödinger equation the frequency of the phase fit-
ting is equal to the frequency of the scalar test equation. So, it is necessary to observe
the surroundings of the first diagonal of the H − v plane.

In the case that the frequency of the scalar test equation is equal with the frequency
of phase fitting, i.e. in the case that v = H (i.e. see the surroundings of the first diag-
onal of the H − v plane), it is easy to see that the interval of periodicity of the new
method developed in Sect. 3 is equal to: (0,∞) − S, where S = π, 2 π, 3 π, . . ..

From the above analysis we have the following theorem:

Theorem 3 The method developed in Sect. 4 is of eighth algebraic order, has the
phase-lag and its first, second and third derivatives equal to zero and has an interval
of periodicity equals to: (0,∞) − S, where S = π, 2 π, 3 π, . . ..

Based on the analysis presented above, we studied the interval of periodicity of the
following methods:

1 Where S is a set of distinct points.
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Fig. 2 v − H plane of the the new developed method

Table 1 Comparative stability
analysis for the methods
mentioned in the Sect. 5

Method Interval of periodicity

CL (0, 7.571916416)

SI (see [43]) (0, 39.47841760)

AS (see [48]) (0, 9.869604404)

NM (see Sect. 4) (0, ∞) − S, where S = π, 2 π, 3 π, . . .

– The classical method of sixth algebraic order (indicated as CL) presented in [43]
– The hybrid sixth algebraic order method with vanished the phase-lag and its first

derivative developed in [43] (indicated as SI)
– The hybrid sixth algebraic order method with vanished the phase-lag and its first

and second derivatives developed in [48] (indicated as AS)
– The hybrid eighth algebraic order method with vanished the phase-lag and its first,

second and third derivatives developed in Sect. 4 (indicated as NM)

The results presented in the Table 1.

7 Numerical results

In this section, we will apply the new developed method to the radial time-independent
Schrödinger equation (1).

Since the new developed method is frequency dependent method, in order to apply
the new developed method to the radial Schrödinger equation, the value of parameter
ω is needed. Based on (1), the parameter ω is given by (for the case l = 0):

ω =
√

|V (r) − k2| = √|V (r) − E | (33)

where V (r) is the potential and E is the energy.
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7.1 Woods-Saxon potential

For the purpose of the present application, we use the well known Woods-Saxon
potential which can be written as

V (r) = u0

1 + y
− u0 y

a (1 + y)2 (34)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

The behavior of Woods-Saxon potential is shown in Fig. 3.
It is well known that for some potentials, such as the Woods-Saxon potential, the

definition of parameter ω is given not as a function of x but as based on some critical
points which have been defined from the investigation of the appropriate potential (see
for details [101]).

For the purpose of obtaining our numerical results, it is appropriate to choose v as
follows (see for details [1] and [75]):

ω =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(35)

For example, in the point of the integration region r = 6.5, the value of ω is equal
to:

√−25 + E . So, H = ω h = √−25 + E h. In the point of the integration region
r = 6.5 − 3 h, the value of ω is equal to:

√−50 + E, etc.

-50

-40

-30

-20

-10

0
2 4 6 8 10 12 14

r
The Woods-Saxon Potential

Fig. 3 The Woods–Saxon potential
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7.2 Radial Schrödinger equation: the resonance problem

For the purpose of this application, we consider the numerical solution of the one
dimensional time independent Schrödinger equation (1) in the well-known case of
the Woods-Saxon potential (34). In order to solve this problem numerically, we must
approximate the true (infinite) interval of integration by a finite interval. For our numer-
ical illustration, we take the domain of integration as r ∈ [0, 15]. We consider Eq. (1)
in a rather large domain of energies, i.e., E ∈ [1, 1000].

In the case of positive energies, E = k2, the potential decays faster than the term
l(l+1)

r2 and the Schrödinger equation effectively reduces to

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (36)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel and Neumann functions, respec-
tively. Thus, the solution of Eq. (1) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)

≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(37)

where δl is the phase shift that may be calculated from the formula

tan δl = q (r2) S (r1) − q (r1) S (r2)

q (r1) C (r1) − q (r2) C (r2)
(38)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). Since the problem is treated as an initial-value problem, we need
q j , j = 0, 1 before starting a two-step method. From the initial condition, we obtain
q0. The value q1 is obtained by using high order Runge–Kutta–Nyström methods(see
[110] and [111]). With these starting values, we evaluate at r2 of the asymptotic region
the phase shift δl .

For positive energies, we have the so-called resonance problem. This problem con-
sists either of finding the phase-shift δl or finding those E , for E ∈ [1, 1000], at which
δl = π

2 . We actually solve the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, q(r) = cos
(√

Er
)

for large r. (39)

We compute the approximate positive eigenenergies of the Woods-Saxon resonance
problem using:
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– The eighth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT8.

– The tenth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[25], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [76], which is indicated as
Method MRA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [24], which is indicated as Method MCR6

– The classical form of the sixth algebraic order method developed in Sect. 4, which
is indicated as Method NMCL.2

– The hybrid two-step method of sixth algebraic order with vanished phase-lag and
its first derivative, which was developed in [43] and is indicated as Method MSI

– The hybrid two-step method of sixth algebraic order with vanished phase-lag and
its first and second derivatives, which was indicated in [48] and is indicated as
Method MAS

– The hybrid two-step method of sixth algebraic order with vanished phase-lag and
its first, second and third derivatives (obtained in Sect. 4), which is indicated as
Method NM3

The computed eigenenergies are compared with reference values.3 In Figs. 4 and
5, we present the maximum absolute error Errmax = |log10 (Err)| where

Err = |Ecalculated − Eaccurate| (40)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916, respectively, for sev-
eral values of CPU time (in seconds). We note that the CPU time (in seconds) counts
the computational cost for each method.

8 Conclusions

In this paper we have studied the vanishing procedure for the phase-lag and its first,
second and third derivatives and how this procedure affects the efficiency of the pro-
duced method for the approximate solution of the radial Schrödinger equation and
related problems. As a result of the application of the above mentioned procedure, we
have produced a hybrid two-step method that is very efficient on any problem with
oscillating solutions or problems with solutions contain the functions cos and sin or
any combination of them.

From the results presented above, we can make the following remarks:

2 With the term classical we mean the method of Section 3.2 with constant coefficients.
3 The reference values are computed using the well known two-step method of Chawla and Rao [24] with
small step size for the integration.
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Fig. 4 Accuracy (digits) for several values of CPU time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

1. The classical form of the sixth algebraic order method developed in Sect. 4, which
is indicated as Method NMCL is of the same efficiency with the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [25], which is indicated
as Method MCR4. Both the above mentioned methods are more efficient than
the exponentially-fitted method of Raptis and Allison [76], which is indicated as
Method MRA.

2. The tenth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT10 is more efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [25], which is indi-
cated as Method MCR4. The Method QT10 is also more efficient than the
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Fig. 5 Accuracy (digits) for several values of CPU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

eighth order multi-step method developed by Quinlan and Tremaine [19], which
is indicated as Method QT8. Finally, the Method QT10 is also more efficient
than the hybrid sixth algebraic order method developed by Chawla and Rao with
minimal phase-lag [24], which is indicated as Method MCR6.

3. The twelfth order multi-step method developed by Quinlan and Tremaine [19],
which is indicated as Method QT12 is more efficient than the tenth order multi-
step method developed by Quinlan and Tremaine [19], which is indicated as
Method QT10

4. The hybrid two-step method with vanished phase-lag and its first derivative
(obtained in [43]), which is indicated as Method MSI is more efficient than
the twelfth order multi-step method developed by Quinlan and Tremaine [19].

5. The hybrid two-step method with vanished phase-lag and its first and second deriv-
atives (obtained in [48]), which is indicated as Method MAS is more efficient
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than the hybrid two-step method with vanished phase-lag and its first derivative
(obtained in [43]).

6. Finally, the New developed hybrid two-step method with vanished phase-lag and
its first, second and third derivatives (obtained in Sect. 4), which is indicated as
Method NM3 is the most efficient one.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).

Appendix

New method with vanished phase-lag and its first, second and third derivative
(developed in Sect. 4)

LTENM = h8
[(

1

1680

(
d4

dx4 g (x)

)
p (x) + 1

2520

(
d3

dx3 g (x)

)
d

dx
p (x)

+ 1
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g (x) p (x)

d2

dx2 g (x) + 1
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(
d

dx
g (x)

)2
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)
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]

(41)
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